215 research outputs found

    Quantum dots to monitor RNAi delivery and improve gene silencing

    Get PDF
    A critical issue in using RNA interference for identifying genotype/phenotype correlations is the uniformity of gene silencing within a cell population. Variations in transfection efficiency, delivery-induced cytotoxicity and ‘off target’ effects at high siRNA concentrations can confound the interpretation of functional studies. To address this problem, we have developed a novel method of monitoring siRNA delivery that combines unmodified siRNA with seminconductor quantum dots (QDs) as multi color biological probes. We co-transfected siRNA with QDs using standard transfection techniques, thereby leveraging the photostable fluorescent nanoparticles to track delivery of nucleic acid, sort cells by degree of transfection and purify homogenously-silenced subpopulations. Compared to alternative RNAi tracking methods (co-delivery of reporter plasmids and end-labeling the siRNA), QDs exhibit superior photostability and tunable optical properties for an extensive selection of non-overlapping colors. Thus this simple, modular system can be extended toward multiplexed gene knockdown studies, as demonstrated in a two color proof-of-principle study with two biological targets. When the method was applied to investigate the functional role of T-cadherin (T-cad) in cell–cell communication, a subpopulation of highly silenced cells obtained by QD labeling was required to observe significant downstream effects of gene knockdown

    Psychometric Properties of the Young Children's Participation and Environment Measure

    Get PDF
    AbstractObjectiveTo evaluate the psychometric properties of the newly developed Young Children's Participation and Environment Measure (YC-PEM).DesignCross-sectional study.SettingData were collected online and by telephone.ParticipantsConvenience and snowball sampling methods were used to survey caregivers of children (N=395, comprising children with [n=93] and without [n=302] developmental disabilities and delays) between the ages of 0 and 5 years (mean age ± SD, 35.33±20.29mo) and residing in North America.InterventionsNot applicable.Main Outcome MeasuresThe YC-PEM includes 3 participation scales and 1 environment scale. Each scale is assessed across 3 settings: home, daycare/preschool, and community. Data were analyzed to derive estimates of internal consistency, test-retest reliability, and construct validity.ResultsInternal consistency ranged from .68 to .96 and .92 to .96 for the participation and environment scales, respectively. Test-retest reliability (2–4wk) ranged from .31 to .93 for participation scales and from .91 to .94 for the environment scale. One of 3 participation scales and the environment scale demonstrated significant group differences by disability status across all 3 settings, and all 4 scales discriminated between disability groups for the daycare/preschool setting. The participation scales exhibited small to moderate positive associations with functional performance scores.ConclusionsResults lend initial support for the use of the YC-PEM in research to assess the participation of young children with disabilities and delays in terms of (1) home, daycare/preschool, and community participation patterns; (2) perceived environmental supports and barriers to participation; and (3) activity-specific parent strategies to promote participation

    InVERT molding for scalable control of tissue microarchitecture

    Get PDF
    Complex tissues contain multiple cell types that are hierarchically organized within morphologically and functionally distinct compartments. Construction of engineered tissues with optimized tissue architecture has been limited by tissue fabrication techniques, which do not enable versatile microscale organization of multiple cell types in tissues of size adequate for physiological studies and tissue therapies. Here we present an ‘Intaglio-Void/Embed-Relief Topographic molding’ method for microscale organization of many cell types, including induced pluripotent stem cell-derived progeny, within a variety of synthetic and natural extracellular matrices and across tissues of sizes appropriate for in vitro, pre-clinical, and clinical studies. We demonstrate that compartmental placement of non-parenchymal cells relative to primary or induced pluripotent stem cell-derived hepatocytes, compartment microstructure, and cellular composition modulate hepatic functions. Configurations found to sustain physiological function in vitro also result in survival and function in mice for at least 4 weeks, demonstrating the importance of architectural optimization before implantation.National Institutes of Health (U.S.) (EB008396)National Institutes of Health (U.S.) (DK56966)National Cancer Institute (U.S.) (Cancer Center Support Core Grant P30-CA14051)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (1F32DK091007)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (1F32DK095529)National Science Foundation (U.S.). Graduate Research Fellowship Program (1122374

    Label-free segmentation of co-cultured cells on a nanotopographical gradient

    Get PDF
    The function and fate of cells is influenced by many different factors, one of which is surface topography of the support culture substrate. Systematic studies of nanotopography and cell response have typically been limited to single cell types and a small set of topographical variations. Here, we show a radical expansion of experimental throughput using automated detection, measurement, and classification of co-cultured cells on a nanopillar array where feature height changes continuously from planar to 250 nm over 9 mm. Individual cells are identified and characterized by more than 200 descriptors, which are used to construct a set of rules for label-free segmentation into individual cell types. Using this approach we can achieve label-free segmentation with 84% confidence across large image data sets and suggest optimized surface parameters for nanostructuring of implant devices such as vascular stents

    TBI lesion segmentation in head CT: impact of preprocessing and data augmentation

    Get PDF
    Automatic segmentation of lesions in head CT provides keyinformation for patient management, prognosis and disease monitoring.Despite its clinical importance, method development has mostly focusedon multi-parametric MRI. Analysis of the brain in CT is challengingdue to limited soft tissue contrast and its mono-modal nature. We studythe under-explored problem of fine-grained CT segmentation of multiplelesion types (core, blood, oedema) in traumatic brain injury (TBI). Weobserve that preprocessing and data augmentation choices greatly impactthe segmentation accuracy of a neural network, yet these factors arerarely thoroughly assessed in prior work. We design an empirical studythat extensively evaluates the impact of different data preprocessing andaugmentation methods. We show that these choices can have an impactof up to 18% DSC. We conclude that resampling to isotropic resolutionyields improved performance, skull-stripping can be replaced by using theright intensity window, and affine-to-atlas registration is not necessaryif we use sufficient spatial augmentation. Since both skull-stripping andaffine-to-atlas registration are susceptible to failure, we recommend theiralternatives to be used in practice. We believe this is the first work toreport results for fine-grained multi-class segmentation of TBI in CT. Ourfindings may inform further research in this under-explored yet clinicallyimportant task of automatic head CT lesion segmentation

    3D Hepatic Cultures Simultaneously Maintain Primary Hepatocyte and Liver Sinusoidal Endothelial Cell Phenotypes

    Get PDF
    Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes) and non-parenchymal (liver sinusoidal endothelial, LSEC) cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs) were cultured in a layered three-dimensional (3D) configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM), which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1) demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism, detoxification and signaling pathways in vitro

    Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system

    Get PDF
    Author Manuscript 2010 August 1Hepatitis C virus (HCV), which infects 2–3% of the world population, is a causative agent of chronic hepatitis and the leading indication for liver transplantation1. The ability to propagate HCV in cell culture (HCVcc) is a relatively recent breakthrough and a key tool in the quest for specific antiviral therapeutics. Monitoring HCV infection in culture generally involves bulk population assays, use of genetically modified viruses and/or terminal processing of potentially precious samples. Here we develop a cell-based fluorescent reporter system that allows sensitive distinction of individual HCV-infected cells in live or fixed samples. We demonstrate use of this technology for several previously intractable applications, including live-cell imaging of viral propagation and host response, as well as visualizing infection of primary hepatocyte cultures. Integration of this reporter with modern image-based analysis methods could open new doors for HCV research.New York (State). Dept. of Health (Empire State Stem Cell Fund Contract C023046)United States. Public Health Service (Grant R01 DK56966)National Institutes of Health (U.S.) (Roadmap for Medical Research Grant 1 R01 DK085713-01)Howard Hughes Medical Institute (Investigator

    A novel human skin chamber model to study wound infection ex vivo

    Get PDF
    Wound infections with multi-drug resistant bacteria increase morbidity and mortality and have considerable socioeconomic impact. They can lead to impaired wound healing, resulting in rising treatment costs. The aim of this study was to investigate an ex vivo human wound infection model. Human full-thickness skin from the operating room (OR) was placed into the Bo-Drum® and cultivated for 7 days in an air–liquid interphase. On day 8, the skin was inoculated with either (1) Pseudomonas aeruginosa, (2) Staphylococcus aureus (105 CFU, n = 3) or (3) carrier control. 1, 3 and 7 days after inoculation colony forming units in the tissue/media were determined and cytokine expression was quantified. A reliable and reproducible wound infection could be established for 7 days. At this timepoint, 1.8 × 108 CFU/g tissue of P. aeruginosa and 2 × 107 CFU/g tissue of S. aureus were detected. Immunohistochemical analysis demonstrated bacterial infection and epidermolysis in infected skin. RT-PCR analysis exhibited a significant induction of proinflammatory cytokines after infection. The BO-drum® is a robust, easy-to-use, sterilizable and reusable ex vivo full-skin culture system. For investigation of wound infection, treatment and healing, the BO-drum® presents a convenient model and may help to standardize wound research

    Aging Predisposes Oocytes to Meiotic Nondisjunction When the Cohesin Subunit SMC1 Is Reduced

    Get PDF
    In humans, meiotic chromosome segregation errors increase dramatically as women age, but the molecular defects responsible are largely unknown. Cohesion along the arms of meiotic sister chromatids provides an evolutionarily conserved mechanism to keep recombinant chromosomes associated until anaphase I. One attractive hypothesis to explain age-dependent nondisjunction (NDJ) is that loss of cohesion over time causes recombinant homologues to dissociate prematurely and segregate randomly during the first meiotic division. Using Drosophila as a model system, we have tested this hypothesis and observe a significant increase in meiosis I NDJ in experimentally aged Drosophila oocytes when the cohesin protein SMC1 is reduced. Our finding that missegregation of recombinant homologues increases with age supports the model that chiasmata are destabilized by gradual loss of cohesion over time. Moreover, the stage at which Drosophila oocytes are most vulnerable to age-related defects is analogous to that at which human oocytes remain arrested for decades. Our data provide the first demonstration in any organism that, when meiotic cohesion begins intact, the aging process can weaken it sufficiently and cause missegregation of recombinant chromosomes. One major advantage of these studies is that we have reduced but not eliminated the SMC1 subunit. Therefore, we have been able to investigate how aging affects normal meiotic cohesion. Our findings that recombinant chromosomes are at highest risk for loss of chiasmata during diplotene argue that human oocytes are most vulnerable to age-induced loss of meiotic cohesion at the stage at which they remain arrested for several years
    corecore